Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

N, N^{\prime}-Bis(2,3-dichlorobenzylidene)ethylenediamine

Yeganeh Khaniani, ${ }^{\text {a }}$ Alireza Badiei, ${ }^{\text {a }}$ Ghodsi Mohammadi Ziarani ${ }^{\text {b }}$ and Alireza Abbasi ${ }^{\text {a* }}$

${ }^{\text {a }}$ School of Chemistry, University College of Science, University of Tehran, Tehran, Iran, and ${ }^{\mathbf{b}}$ Department of Chemistry, University of Alzahra, Tehran, Iran Correspondence e-mail: aabbasi@khayam.ut.ac.ir

Received 31 October 2007; accepted 31 October 2007
Key indicators: single-crystal X-ray study; $T=290 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$; R factor $=0.037 ; \omega R$ factor $=0.068 ;$ data-to-parameter ratio $=15.8$.

The title compound, $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{Cl}_{4} \mathrm{~N}_{2}$, contains two chlorosubstituted benzyl rings connected through a diimine group. The molecule lies across a center of symmetry.

Related literature

For the structure of another similar chloro-substituted compound, see: Abbasi et al. (2007). These compounds are capable of tetradentate coordination to metals; see Helldörfer et al. (2003); Richmond et al. (1988). For related literature, see: Asadi et al. (2005).

Experimental

Crystal data
$\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{Cl}_{4} \mathrm{~N}_{2}$
$M_{r}=374.08$
Monoclinic, $P 2_{1} / n$
$a=7.5695$ (9) A
$b=12.0686$ (13) \AA
$c=9.1636$ (7) A
$\beta=101.637$ (9) ${ }^{\circ}$

$$
\begin{aligned}
& V=819.92(15) \AA^{3} \\
& Z=2 \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=0.72 \mathrm{~mm}^{-1} \\
& T=290(2) \mathrm{K} \\
& 0.15 \times 0.12 \times 0.10 \mathrm{~mm}
\end{aligned}
$$

Data collection

STOE IPDS diffractometer
Absorption correction: numerical (X-RED; Stoe \& Cie, 1997)
$T_{\text {min }}=0.892, T_{\text {max }}=0.915$
30 measured reflections 1579 independent reflections 623 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.058$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037 \quad 100$ parameters
$w R\left(F^{2}\right)=0.068$
$S=0.83$
1579 reflections

H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.21 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\min }=-0.17 \mathrm{e} \mathrm{A}^{-3}$

Data collection: IPDS Software (Stoe \& Cie, 1997); cell refinement: IPDS Software; data reduction: IPDS Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 2001); software used to prepare material for publication: PLATON (Spek, 2003).

This work was supported by grants from the University of Tehran and the University of Alzahra.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2359).

References

Abbasi, A., Badiei, A., Khaniani, Y., Golchoubian, H. \& Eriksson, L. (2007). Acta Cryst. E63, o3773.
Asadi, H., Golchoubian, H. \& Welter, R. (2005). J. Mol. Struct. 779, 30-37.
Brandenburg, K. (2001). DIAMOND. Version 2.1e. Crystal Impact GbR, Bonn, Germany.
Helldörfer, M., Backhaus, J. \& Helmut, G. (2003). Inorg. Chim. Acta, 351, 3442.

Richmond, T., Kelson, E. P. \& Patton, A. T. (1988). J. Chem. Soc. Chem. Commun. pp. 96-97.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Stoe \& Cie (1997). X-SHAPE (Version 1.02) and X-RED (Version 1.09). Stoe \& Cie GmbH, Darmstadt, Germany.

supplementary materials

Acta Cryst. (2007). E63, o4616 [doi:10.1107/S1600536807055122]

N, N^{\prime}-Bis(2,3-dichlorobenzylidene)ethylenediamine

Y. Khaniani, A. Badiei, G. Mohammadi Ziarani and A. Abbasi

Comment

In the current study the structure of the title compound, which can be potentially used as tetradentate ligand is investigated (Helldörfer et al., 2003 \& Richmond et al., 1988). This structure is isomer with what we have recently reported with different chloro-substituted benzaldehyde derivative (Abbasi et al., 2007). Solvatochromic phenomenon in the mixed-chelates metal complexes with similar structure has received great attention (Asadi et al., 2005).

The moleculare structure of (I) and the atom-numbering scheme are shown in Fig. 1. The asymmetric unit contains one half-molecule in the centrosymmetric title compound with a centre of symmetry between the two central carbon atoms. Relatively weak intermolecular van der Waals interactions between the adjacent molecules are responsible to stabilize the crystal structure. Due to the center of symmetry in the middle of molecule, the two benzyl rings are located in two parallel planes with zero dihedral angle. Also, for the same reason the two carbon and two nitrogen atoms ($\mathrm{N} 1-\mathrm{C} 8-\mathrm{C} 8-\mathrm{N} 1$) are in a common plane with torsion angle of 180.0°. The structure of the title compound was corroborated by IR and 1 H NMR spectroscopy.

Experimental

The title compound was synthesized by the reaction of 2,3-dichlorobenzaldehyde (100 mmol) in absolute ethanol (30 ml) and ethylenediamine (50 mmol) followed by 24 h stirring. The colorless crystalline solid was obtained ($17 \mathrm{mmol}, 57 \%$). The precipitates was filtered and washed with ether and hexane. Crystals suitable for crystallography were obtained by recrystallization from dichloromethane.

Refinement

All H atoms were geometrically positioned and constrained to ride on their parent atoms, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Figures

Fig. 1. Molecular structure of (I), with 50% probability displacement ellipsoids. H atoms are shown as circles of arbitrary radii.

N, N^{\prime}-Bis(2,3-dichlorobenzylidene)ethylenediamine

Crystal data

$\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{Cl}_{4} \mathrm{~N}_{2}$
$F_{000}=380$
$M_{r}=374.08$

$$
D_{\mathrm{x}}=1.515 \mathrm{Mg} \mathrm{~m}^{-3}
$$

supplementary materials

Monoclinic, $P 2{ }_{1} / n$
Hall symbol: -P 2yn
$a=7.5695$ (9) \AA
$b=12.0686$ (13) \AA
$c=9.1636(7) \AA$
$\beta=101.637(9)^{\circ}$
$V=819.92(15) \AA^{3}$
$Z=2$

Mo K α radiation
$\lambda=0.71073 \AA$
Cell parameters from 4730 reflections
$\theta=3.5-26.0^{\circ}$
$\mu=0.72 \mathrm{~mm}^{-1}$
$T=290$ (2) K
Needle, colorless
$0.15 \times 0.12 \times 0.10 \mathrm{~mm}$

1579 independent reflections
623 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.058$
$\theta_{\text {max }}=26.0^{\circ}$
$\theta_{\text {min }}=3.9^{\circ}$
$h=-8 \rightarrow 9$
$k=-14 \rightarrow 14$
$l=-9 \rightarrow 11$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037$
$w R\left(F^{2}\right)=0.068$
$S=0.83$
1579 reflections
100 parameters
Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring
sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.025 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\max }=0.21 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.16$ e \AA^{-3}

Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F , with F set to zero for negative F^{2}. The threshold expression of $\mathrm{F}^{2}>2 \operatorname{sigma}\left(\mathrm{~F}^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F , and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
C11	$0.75551(12)$	$0.30320(7)$	$0.46001(8)$	$0.0687(3)$
C12	$0.51851(12)$	$0.39080(7)$	$0.16625(8)$	$0.0716(3)$
N1	$0.9559(3)$	$0.5420(2)$	$0.8021(3)$	$0.0538(7)$
C1	$1.0531(4)$	$0.4926(3)$	$0.9400(2)$	$0.0582(10)$
H1A	1.1701	0.5277	0.9697	0.070^{*}
H1B	1.0720	0.4143	0.9249	0.070^{*}
C2	$0.8958(4)$	$0.4790(3)$	$0.6963(3)$	$0.0507(9)$
H2	0.9198	0.4036	0.7087	0.061^{*}
C3	$0.7886(4)$	$0.5169(3)$	$0.5524(3)$	$0.0390(8)$
C4	$0.7535(4)$	$0.6297(3)$	$0.5276(3)$	$0.0485(8)$
H4	0.8002	0.6802	0.6021	0.058^{*}
C5	$0.6513(4)$	$0.6679(3)$	$0.3953(3)$	$0.0556(9)$
H5	0.6303	0.7434	0.3812	0.067^{*}
C6	$0.5803(4)$	$0.5945(3)$	$0.2843(3)$	$0.0514(9)$
H6	0.5112	0.6201	0.1951	0.062^{*}
C7	$0.6123(4)$	$0.4821(3)$	$0.3060(3)$	$0.0453(8)$
C8	$0.7172(4)$	$0.4445(2)$	$0.4389(3)$	$0.0431(8)$

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C11	$0.0765(7)$	$0.0482(6)$	$0.0776(6)$	$0.0112(5)$	$0.0066(5)$	$-0.0045(5)$
C12	$0.0668(6)$	$0.0830(8)$	$0.0599(5)$	$-0.0036(5)$	$0.0003(4)$	$-0.0179(5)$
N 1	$0.0573(19)$	$0.064(2)$	$0.0397(15)$	$0.0015(15)$	$0.0085(14)$	$0.0001(14)$
C1	$0.049(3)$	$0.081(3)$	$0.043(2)$	$0.0091(19)$	$0.0052(16)$	$0.0010(19)$
C2	$0.048(2)$	$0.057(2)$	$0.050(2)$	$0.0126(19)$	$0.0168(18)$	$0.0082(18)$
C3	$0.036(2)$	$0.044(2)$	$0.0385(17)$	$-0.0051(17)$	$0.0113(15)$	$-0.0012(17)$
C4	$0.050(2)$	$0.045(2)$	$0.0524(19)$	$-0.0065(19)$	$0.0148(17)$	$-0.0030(17)$
C5	$0.058(2)$	$0.052(2)$	$0.058(2)$	$-0.0018(19)$	$0.0143(19)$	$0.0094(19)$
C6	$0.047(2)$	$0.064(3)$	$0.0429(19)$	$0.0013(19)$	$0.0075(16)$	$0.0099(19)$
C7	$0.038(2)$	$0.054(2)$	$0.0434(19)$	$-0.0051(18)$	$0.0072(16)$	$-0.0046(17)$
C8	$0.036(2)$	$0.043(2)$	$0.0535(19)$	$0.0062(16)$	$0.0153(16)$	$0.0029(16)$

Geometric parameters ($\AA,{ }^{\circ}$)

$\mathrm{Cl} 1-\mathrm{C} 8$	$1.734(3)$	$\mathrm{C} 3-\mathrm{C} 8$	$1.383(3)$
$\mathrm{C} 2-\mathrm{C} 7$	$1.730(3)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.396(3)$
$\mathrm{N} 1-\mathrm{C} 2$	$1.243(3)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.380(3)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.456(3)$	$\mathrm{C} 4-\mathrm{H} 4$	0.9300
$\mathrm{C} 1-\mathrm{C} 1^{\mathrm{i}}$	$1.497(5)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.373(4)$
$\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	0.9700	$\mathrm{C} 5-\mathrm{H} 5$	0.9300
$\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	0.9700	$\mathrm{C} 6-\mathrm{C} 7$	$1.385(3)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.475(3)$	$\mathrm{C} 6-\mathrm{H} 6$	0.9300
$\mathrm{C} 2-\mathrm{H} 2$	0.9300	$\mathrm{C} 7-\mathrm{C} 8$	$1.389(3)$

supplementary materials

C2-N1-C1	117.9 (3)	C5-C4-H4	119.2
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 1^{1}$	109.7 (3)	C3-C4-H4	119.2
N1-C1-H1A	109.7	C6-C5-C4	120.1 (3)
C1 ${ }^{\text {i }}$ - $\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	109.7	C6-C5-H5	119.9
N1-C1-H1B	109.7	C4-C5-H5	119.9
C1 ${ }^{\text {i }}$ - $\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	109.7	C5-C6-C7	119.6 (3)
$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	108.2	C5-C6-H6	120.2
N1-C2-C3	123.8 (3)	C7-C6-H6	120.2
N1-C2-H2	118.1	C6-C7-C8	119.9 (3)
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	118.1	C6-C7-C12	118.9 (2)
C8-C3-C4	117.5 (2)	C8-C7-C12	121.2 (3)
C8-C3-C2	122.5 (3)	C3-C8-C7	121.4 (3)
C4-C3-C2	120.0 (3)	C3-C8-Cl1	120.4 (2)
C5-C4-C3	121.5 (3)	C7-C8-C11	118.2 (2)
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 1-\mathrm{Cl}^{\text {i }}$	-112.7 (3)	C5-C6-C7-C12	178.8 (2)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3$	177.4 (2)	C4-C3-C8-C7	-1.0 (4)
N1-C2-C3-C8	-177.3 (3)	C2-C3-C8-C7	178.1 (2)
N1-C2-C3-C4	1.8 (4)	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 8-\mathrm{Cl} 1$	179.6 (2)
C8-C3-C4-C5	0.2 (4)	C2-C3-C8-C11	-1.4 (4)
C2-C3-C4-C5	-178.9 (3)	C6-C7-C8-C3	1.2 (4)
C3-C4-C5-C6	0.3 (4)	C12-C7-C8-C3	-178.3 (2)
C4-C5-C6-C7	-0.1 (4)	C6-C7-C8-C11	-179.3 (2)
C5-C6-C7-C8	-0.7 (4)	C12-C7-C8-Cl1	1.2 (3)

Symmetry codes: (i) $-x+2,-y+1,-z+2$.

Fig. 1

